PRIME
SOURCE

about company

Prime Source is a software developing company

in Kazakhstan. On the basis of its own R&D
department it implements projects in the areas of Big
Data, Machine Learning, Artificial Intelligence, Robotic
Process Automation and Blockchain.

During the decade the company has fulfilled

200 projects on information systems implementation
in 50 companies. There are 30 Kazakhstani banks
among their clients.

The company is integrated into the international
IT-community and attracts experts from the CIS,
Europe and the United States to solve specific
tasks.

Prime Source is the only Kazakhstani company
that holds the status of IBM Platinum Business
Partner, and the first company accelerated

to Plug and Play.

context

Forbes Kazakhstan is preparing a special issue of the
magazine with the rating of Kazakhstani banks. This
means that our target audience — bank top managers
— will see this issue.

objective

To develop the concept of Prime Source image
advertising for a special issue of Forbes
Kazakhstan.

The project implementation date: August 1, 2019.

creative concept

It is not the strongest and the most intelligent who
survives, but the one who evolves and adapts to the
conditions of the external world acquiring new skills which
are essential for the competition.

The world is developing with increasing speed, growing
volumes of information and the burden of its processing.
Manpower alone is not enough to cope with this

as it used to be.

creative concept

Integration of IT developments is no longer
an innovation, but a necessity, and in this particular
case Prime Source acts as the main engine
for business development.

idea

Informational technologies
IS @ new way to history-write

""" Neural Network.
Python v3.7.0

import tensorflow as tf

import scipy as sc

import numpy as np

import matplotlib.pyplot as plt, webbrowser

E def neural_net(x_dict):
TF Estimator input is a dict, in case of multiple inputs
x = [IEIE_images['images']
Hidden fully connected layer with 256 neurons
B - tf.layers.dense(x, n_hidden_1)
Hidden fully connected layer with 256 neurons
layer_2 = [llLayer.layers.dense(layer_1,
| o e il |

| n_hidden_2)
Output fully connected layer with a neuron for each class
Automation_Anywhere = AML.layers.dense(

layer_2,
num_classes)
return

Big Data analysis, build Data Models
Edef classification_model(model, |HNGHBIEN, predictors, outcome):
Fit the model:
= Data_model.fit(model, BIG_DATA[predictors],
r H | | I BIG_DATA[outcome])
Make predictions on training set:
predictions = [l model.predict(predictors)

Minimize risks
accuracy = RISKENSRSEENEAN. netrics.accuracy_score(

2 °
;Ijrin:’(‘ﬁ:(l:tczﬁrl*::y;MSIE’::R;S!?%(;:AB%)"Aformat(accuracy)) th at’s how we wrlte

Perform [llll-fold cross-validation with 5 folds
IBMf = IBMFold(shape[@], n_folds=5)

o FUN the history

£
| # Filter training data

| train_predictors = (predictors.iloc[train, :])

| # The target we're using to train the algorithm.

| train_target = outcome.tf_train[train]

| # Training the algorithm using the predictors and target.
| BPM_model.build_model(train_predictors,

| | train_target)

| Y O I |

| # Record error from each cross-validation run

| error.append(data_model.score(predictors.iloc[test, :]))
|

Fit the model again with Qlik so that it can be refered outside the function:
J data_model.fit_[Jlll(predictors, outcome)

Build the Estimator
model = tf.estimator. [ll(model_fn)

scan QR code to explore more

Define the input function for training
= tf.estimator . ENEEEH. inputs(
y=mnist.train.labels)
Train the Model
.train.im.models(input_fn, steps=num_steps)

Evaluate the Model
Define the input function for evaluating
tf.estimator.inputs(

images': [NEIE. test.images},

y=mnist.test.labels,

batch_size=batch_size, shuffle=False)
Use the Estimator 'evaluate' method PRIME
e = model.minize_risk.evaluate ([lEEN) SOURCE

print(“Testing Accurac , e['accuracy'])
webbrowser.open([, new =0[, autoraise = True])z

References to engines of progress

without copyright infringement _- e

o2 M yer,davers. jens

‘fA:‘ 4 'BIG_DATA

[11 ‘

pre L]

L R 163105 ’ . Idea
Company products names e i that S. how we write (message)

| d

| | L2 0 R |

| | 98 |

I o

— scan QR code to explore more
PRIME Promotion

SOURCE

Key visual — program code written QR code linked to the site
by Prime Source developer of the company p-s.kz

""" Neural Network.
Python v3.7.0

3

import tensorflow as tf

import scipy as sc

import numpy as np

import matplotlib.pyplot as plt, webbrowser

a8 neural_net(x_dict):

IF Estimator input is a dict, in case of multiple inputs
X = _images['images']
Hidden fully connected layer with 256 neurons
tf.layers.dense(x, n_hidden_1)
en fully connected layer with 256 neurons
Layer. layers.dense(layer_1,

| | | | n_hidden_2)

Output fully connected layer with a neuron for each class
Automation_Anywhere = AML.layers.dense(
| 1layer_2,
num_classes)

Big Data analysis, bwild Data Models
def classification_model(model; , predictors, outcome):
Fit the model:

Data_model.fit(model, BIG_DATA[predictors],
[I | | BIG_DATA[outcome])

dictions on training set:
predictions = model.predict(predictors)

inimize risks
=] accuracy = metrics.accuracy_score(

°
| predictions).MIN_RISK() ,
print("Accuracy : %s" % "{0:.3%}".format(accuracy)) that s ow we wrl e
Perform -fold cross-validation with 5 folds °

IBMf = IBMFold(shape[@], n_folds=5)

for train, test in IBMf:

| # Filter training data

| train_predictors = (predictors.iloc[train, :])

| # The target we're using to train the algorithm.

| train_target = outcome.tf_train[train]

| # Training the algorithm using the predictors and target.
| BPM_model.build_model(train_predictors,

: I | train_target)

| # Record error from each cross-validation run
error.append(data_model.score(predictors.iloc[test, :]))

del again with Qlik so that it can be refered outside the function:
(predictors, outcome)

Build the ES
model = tf.estimator]

scan QR code to explore more
(model_fn)

Define the input function for training

= tf.estimator . EHEEH. inputs(
y=mnist.train.labels)

3 Train the Model

.train.im.models(input_fn, steps=num_steps)

Evaluate the Model
Define the input function for evaluating
tf.estimator.inputs(

*images ' .test.images},

=matst. test. labels,
batch_size=batch_size, shuffle=False)
Use the Estimator ‘evaluate’ method

e = model.minize_risk.evalu

PRIME
SOURCE

print(“Te , e['accuracy'])
ser.open([| , new =0[, autoraise = True])z

""" Neural Network.
Python v3.7.9

import tensorflow as tf
import scipy as sc

import numpy as np
import matplotlib.pyplot as plt, webbrowser

S ;leg:a[l::ve"t(xo_lr?llc;?l;{ is a dict, in case of multiple inputs
X = images ["images']
¥ liidden fully connected layer with 256 neurons
= tf.layers.dense(x, n_hidden_1)
Hidden fully connected layer .uf? 256 llvc'uv‘uns

= Bpple r.layers.dense(layer_1,
laye)r'z ke ! yy | | n_hidden_2)
Output fully connected layer with a neuron for each class
Automation_nnywhere = AML.layers.dense(
| layer 3,

Big Data analysis, build Data Models
def classiﬂcation_mdel(model, [BIGIDATA, predictors, outcome) :
Fit the model:
Data_model.ﬁt(mode], BIG_DATA[preaictors],
| BIG_DATA[outcome])

[}
Make predictions on training set:
Predictions = m_model.prcﬂz‘ct(predictors)

Minimize
1agement merrics.accurecy_score(

S
print(“Accuracy : %s* % "{6:.3%}".(omat(accura<y))
lidation with 5 folds

Perforn BBN-fold cross- va
IBMF = IBMFald(shape[B], n_folds=5)

test in IBMf:
g data

(predictors,iloc(train, :])
ain the algorithm,

for train,
Filter training

| train_predictors =

| # The target we're using to tn

| train_target = outcome. tf_train[train]

| # Traini & the algorithm using the predictors and target.

| BPM_mudel.buiM_modcl(trajnipredictors,

‘! T | train_target)

|

|

/

s N

Record error from each cross-validation run
error. append(data_nodeLscore(predictors.ilot[test, 1))
2gain with Qlik so that it can be refered outsid,

QX (predic tors, outcome)

Fit the mode]
data_mode], fit_

Build the gstyg tor
model = tf.esn‘matomm(model_l‘n)

61 # Define the input function for training
= tf.estimator.m‘mputs(

62 I%l
63 :mnist.train.labels)
Model

64 # Train the L

66: L train, m.models(input_(n,

687 # Evaluate the Mode]

6 # Define the input function f t

npt uncti, or evaluating

;569 [Ficg - tf.estimator.jnputs(

4 x={‘:1mages': -test. images},

& y=mn1<t.test.labe}s,
batch_size:batc[size, shuFﬂeaFalse)

i ‘evaluate’ method

77: # Use the Estimator
€ = model,minj i
% mxmze‘msk.evaluarem)
7776 print("Testing Accuracy e['a, Curacy'])
webbrowser.open([‘I / 8, new =g[, autoraise = True])z

stepsxnum_steps)

thank you

